Время смыкания — время, с момента начала смыкания пресс формы и до полной пластификации и равномерного распределения пресс-материала в гнезде пресс-формы.
Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005
Время смыкания — время, с момента начала смыкания пресс формы и до полной пластификации и равномерного распределения пресс-материала в гнезде пресс-формы.
Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005
1776 всего просмотров, 0 просмотров за сегодня
Вязкость расплава — это параметр процесса литья под давлением.
На вязкость расплава влияет температура расплава.
Термопласты в материальном цилиндре и в зоне сопла нагреваются до температуры переработки (160-300 °С), а затем в зоне литьевой формы охлаждаются до 50-120 °С (рис. 10.38, 7). Реактопласты в цилиндре ЛМ нагреваются до температуры плавления олигомера (90-120 °С), а в зоне сопла и формы нагреваются дополнительно — до температуры отверждения, составляющей 160-200 °С.
Допустимая длительность нахождения термопласта в состоянии расплава определяется его термостабильностью. Установлено, что в изотермическом режиме вязкость термопласта со временем понижается и может довольно долго сохраняться. У реактопластов характер изотермического поведения расплава совершенно иной. Сначала при нагреве термореактивного олигомера его вязкость резко снижается, но после конкретного отрезка времени интенсивно увеличивается и завершается переходом в твердое состояние, вызванное химической реакцией отверждения.
Уменьшение вязкости расплава, в частности, может способствовать возрастанию пластикационной производительности червячного пластикатора. Так, увеличение температуры цилиндра от 1/р, 210 до 280 °С вызывает рост пластикационной способности ЛМ по полиолефинам примерно на 20 %. В то же время для блочного ПС нередко наблюдается обратное явление.
С точки зрения технологии важно, что при нагревании полимерный расплав увеличивается в объеме. При охлаждении расплава в форме и его затвердевании плотность полимера возрастает, что приводит к значительной естественной усадке изделия. Это свойство расплавов необходимо учитывать при назначении технологического режима.
Принципиально, чем выше температура, тем ниже плотность и больше значение удельного объема, величина которого определяется физическим и химическим строением полимера.
Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004
2449 всего просмотров, 0 просмотров за сегодня
Винилиденхлорида сополимер — продукты радикальной сополимеризации винилиденхлорида с одним или неск. сомономерами.Продукт гомополимеризации винилиденхлорида (В.) — поливинилиденхлорид [—СН2—СС12—]n (П.) — кристаллизующийся полимер, мол. м. до 100 тыс.; плота, в кристаллич. состоянии 1,875 г/см3, т. стекл. — 19°С, теплостойкость по Вика ок. 200 °С. Хорошо раств. в тетраметиленсульфоне, в других орг. р-рителях — плохо. Трудногорюч. Стоек в воде (водопоглощение за 24 ч 0,01%) и агрессивных средах, однако обладает низкой термич. стабильностью; выше 130°С от П. интенсивно отщепляется НС1; трудно перерабатывается. Поэтому его используют в небольших кол-вах для получения химически стойкого волокна (рована, США), жестких трубок, пленки. Большое распространение получили B.C. и гл. обр. сополимер с винилхлоридом (мол. м. 60-80 тыс.). Введение звеньев винилхлорида в макромолекулу П. нарушает регулярность ее структуры и уменьшает способность к кристаллизации. B.C., содержащие менее 70% по массе В., рассматриваются как аморфные. Т-ра стеклования возрастает линейно с увеличением содержания винилхлорида. Зависимости т-ры вязкого течения и теплостойкости по Вика от состава сополимера носят экстремальный характер с минимумами, соответствующими содержанию винилхлорида 60% (для т-ры вязкого течения) и 40% (для т-ры размягчения). Сополимеры с 40-60% винилхлорида обладают макс. р-римостью в орг. р-рителях, но наиб. склонны к термич. деструкции с отщеплением НС1. При дальнейшем увеличении содержания винилхлорида (до 75%) р-римость B.C. резко уменьшается. Плотность В. с. уменьшается также с увеличением содержания винилхлорида. По прочностным и электрич. св-вам близки к П. Сополимеры жиро-, водо-, газонепроницаемы. Их производят в пром-сти в крупных масштабах. В водной суспензии получают сополимер с 15-25% винилхлорида; его почти полностью перерабатывают в тонкую пленку для упаковки пищ. продуктов, выпускаемую под названиями повиден (СССР), саран (США, Великобритания), курэхалон (Япония). Вследствие способности к кристаллизации пленка при нагревании дает значительную усадку, что используется для плотной и герметичной упаковки продуктов. B.C. с 35% винилхлорида получают в водной эмульсии. Продукт р-ции — латекс; его используют для пропитки бумаги и картона, покрытия сыров; иногда этот сополимер применяют для приготовления полимерцементов. Сополимеры В. с акрилонитрилом (до 40%) получают водноэмулъсионным способом в виде латексов (напр., саран F-120 и F-115; США). Сополимеры хорошо раств. в ацетоне и др. кетонах, ТГФ; их используют для формования химически стойких высокопрочных волокон (см. Поливинилхлоридные волокна). У сополимеров с бутадиеном с увеличением содержания В. возрастают хим-, бензо-и маслостойкость, прочность, снижаются морозостойкость и др. св-ва. Такие сополимеры выпускают в виде латекса и используют для произ-ва искусственной кожи
2579 всего просмотров, 0 просмотров за сегодня
Волокна полиэфирные — синтетические волокна, формуемые из расплава полиэтилентерефталата.
Превосходят по термостойкости большинство натуральных и химических волокон: при 180 °С они сохраняют прочность на 50%. Загораются полиэфирные волокна с трудом и гаснут после удаления источника огня; при контакте с искрой и электродугой не обугливаются. Полиэфирные волокна сравнительно атмосферостойки. Они растворяются в фенолах, частично (с разрушением) — в концентрированной серной и азотной кислотах; полностью разрушаются при кипячении в концентрированных щелочах.
Обработка паром при 100 °С из-за частичного гидролиза полимера вызывает снижение прочности волокна (0,12% за 1 ч). Полиэфирные волокна устойчивы к действию ацетона, четырёххлористого углерода, дихлорэтана и др. растворителей, микроорганизмов, моли, плесени, коврового жучка. Устойчивость к истиранию и сопротивление многократным изгибам полиэфирные волокна ниже, чем у полиамидных волокон, а ударная прочность выше. Прочность при растяжении полиэфирных волокон выше, чем у др. типов химических волокон.
Недостатки П. в. — трудность крашения обычными методами, сильная электризуемость, склонность к пиллингу, жёсткость изделий — во многом устраняются химической модификацией полиэтилентерефталата, например диметилизофталатом, диметиладипинатом (эти соединения вводят в реакционную смесь на стадии синтеза полиэтилентерефталата).
Преимущество синтетических волокон заключается в их устойчивости к разложению, и в том, что при большей прочности на разрыв эти волокна гораздо легче. Кроме того, по сравнению с натуральными волокнами, уровень водопоглащения синтетики гораздо ниже. Их недостаток — худшая адгезия покрытия.
Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005
2225 всего просмотров, 0 просмотров за сегодня
Время термостатирования — время, необходимое для термостатирования заготовки.
Лит.: «Переработка пластмасс» ред. А.Д. Паниматченко, изд. Профессия, Спб 2005
1871 всего просмотров, 0 просмотров за сегодня
Вязкость ударная — способность материалов сопротивляться нагрузкам, приложенным с большой скоростью.
В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах. Основным является метод испытания по ГОСТу 4647. В этом случае образцы в виде стандартного бруска с надрезом (метод Шарли) или без него испытывают на стандартном маятниковом копре, имеющем две опоры для установки образца. Удар наносится маятником копра по середине образца.
Ударная вязкость термопластов в функции температуры принципиально антибатна поведению модуля упругости, то есть с возрастанием температуры она увеличивается, а с понижением падает.
Лит.: «Производство изделий из полимерных материалов» ред. В.К. Крыжановского, изд. Профессия, Спб 2004
2137 всего просмотров, 0 просмотров за сегодня
Среди полимерных материалов, армированных непрерывными волокнами, углепластики - одни из наиболее перспективных. В настоящее время для получения армированных пл...
Вспенивание отдельных гранул кроме простоты аппаратурного оформления технологической схемы имеет ряд преимуществ перед вспениванием больших блоков. Во-первых, и...
Полипропилен Бален 01030 Характеристики Плотность: 900 кг/м3. Показатель текучести расплава: 2,4-3,7 г/10 мин. Предел текучести пр...
АБС-пластик морозостойкий экструзионный Lustran 723-1 Характеристики Реологические свойства Коэффициент текучести расплава: 3 См3/ (10...
Поливинилхлоридный пенопласт ПХВ-1-115 Характеристики Кажущаяся плотность: 115±15 кг/3. Предел прочности при сжатии: не менее 7,0 кг/см2. ...