Анионная полимеризация

| А | 16.10.2008

Анионная полимеризация , ионная полимеризация, при к-рой концевое звено растущей цепи несет полный или частичный отрицат. заряд. Традиционно к А. п. относят процессы, инициируемые соед. щелочных или щел.-зем. металлов (либо своб. анионами). Процессы, развивающиеся с участием переходных металлов, относят обычно, независимо от характера поляризации связи металл-углерод, к координационно-ионной полимеризации.К А. п. способно большинство известных мономеров, напр. ненасыщенные соед., содержащие в ос-положений электроноакцепторные группы (—СН=СН2, —С6Н5, —COOR, —CN, —NO2 и др.), карбонильные соед.,оксиды, тиооксиды, лактоны, лактамы, силоксаны и др. гетероциклич. соединения.

Инициируется А.п. сильными основаниями, донорами электронов, электрич. током и ионизирующими излучениями. Соед. щелочных и щел.-зем. металлов (напр., орг. производные, алкоголяты, амиды) и др. в-ва основного характера инициируют А.п. по типу кислотно-основного взаимод.Своб. металлы, их ион-радикальные соли (напр., нафталинид Na) и др. сильные доноры электронов действуют по типу окисления-восстановления.Процессы типа (1) характерны также для электрохим. и радиационно-хим. инициирования. В инициировании по типу (1) участвуют промежут. ион-радикальные частицы (М-), рекомбинация к-рых приводит к образованию молекул с активными центрами на обоих концах. В принципе, при таком механизме возможно параллельное развитие анионных и радикальных р-ций, однако в реально изученных системах случаи с заметным участием последних не обнаружены.Активные центры А. п. в подавляющем большинстве случаев инициирования щелочными, щел.-зем. металлами или их соединениями представляют собой производные этих металлов. В зависимости от природы концевого мономерного звена (Р), противоиона (Me+) и р-рителя (S)активные центры могут существовать в виде различающихся по реакц. способности и стереоспецифичности ковалентных поляризованных молекул (ф-ла II), их ассоциатов (I), ионных пар разной степени сольватации (III, IV), своб. анионов Р (V).Как правило, противоион входит в состав активного центра и тем самым оказывает непосредств. воздействие на акты роста цепи (исключение — полимеризация на своб. анионах). В предельном случае присоединению мономера к растущей цепи может предшествовать образование координац. комплекса с противоионом (координационноионный механизм). Это создает большие возможности направленного воздействия на полимеризацию и св-ва образующихся полимеров, чем в случае процессов с участием «своб.» частиц (своб. радикалов, анионов и катионов).

Для А. п. характерна, как правило, относит. стабильность активных центров. В ряде случаев, напр. при А. п. неполярных мономеров в углеводородных р-рителях, суммарный процесс включает практически лишь стадии инициирования и роста цепи (р-ции обрыва и передачи цепи отсутствуют или идут с очень малыми скоростями). При этом образуются т. наз. живущие полимеры, концевые группы к-рых сохраняют способность к присоединению мономера или др. реагентов и после завершения полимеризации. Такие полимеры — удобный объект как для исследования механизма А. п., так и для решения разл. синтетич. задач: получения полимеров с заданным ММР, в т.ч. практически монодисперсных; синтеза полимеров и олигомеров с концевыми функц. группами, способными к дальнейшим превращ. поликонденсац. или полимеризац. типа, а также блоксополимеров, привитых сополимеров и разл. полимеров с регулируемым типом разветвления и др. А. п. мономеров с полярными функц. группами — более сложный процесс, сопровождающийся дезактивацией активных центров при взаимод. с функц. группами мономера и полимера. Энергия активации побочных р-ций (как и передачи цепи на р-ритель в случае в-в с подвижным атомом Н, напр. толуола), как правило, выше, чем энергия активации роста цепи; поэтому понижение т-ры полимеризации способствует обычно подавлению побочных р-ций.

Скорость А. п., особенно при умеренных т-рах, в большинстве случаев значительно выше скорости радикальной полимеризации. Это обычно связано с более высокой действующей концентрацией активных частиц (в пределе она м.б. равна исходной концентрации инициатора). Собственная же реакц. способность разл. форм активных центров варьирует в очень широких пределах даже для одного и того же мономера. Напр., для А. п. стирола при 30 °С порядок величины абс. константы скорости роста цепи (в л/моль*с) при переходе вдоль равновесий (2) изменяется от 10-1 (литиевые ассоциаты, II) до 105 (своб. анионы, V). Общая кинетич. картина А. п. существенно осложнена упомянутой выше множественностью форм существования активных центров. Помимо указанных в ур-ниях (2), в ряде процессов играют роль и более сложные образования, напр. ионные тройники типа Р -, Me+, Р- . Поэтому даже в случае живущих полимеров при быстрой стадии инициирования, когда суммарная концентрация растущих цепей равна исходной концентрации инициатора (с0), общая скорость р-ции роста цепи (Vp)далеко не всегда описывается простым ур-нием: Vp = kpc0 [Ml, где kp — константа скорости р-ции. Для строгой интерпретации кинетич. данных и расчета абс. значений элементарных констант необходимо независимое определение Касс, Kдисc и констант др. равновесий типа (2). В ряде случаев это можно осуществить с помощью спектральных, кондуктометрич. и др. измерений, однако в целом А.п. количественно значительно менее изучена, чем, напр., радикальная полимеризация. Участие противоиона в актах роста цепи обусловливает большие возможности воздействия на микроструктуру полимера, вплоть до образования в нек-рых случаях стереорегулярных и оптически активных полимеров. В наиб. степени ориентирующее влияние противоиона проявляется в углеводородной среде, где в присут. Li, наиб. стереоспецифичного из щелочных металлов, образуются 1,4-полидиены (с преобладанием цис-структуры в случае изопрена или с равным содержанием цис- и транс-структур в случае бутадиена) и изотактич. полиметилметакрилат. Среди щел.-зем. металлов образованию цис-1,4-полидиенов и изотактич. полиметилметакрилата в наиб. степени способствует Ва. Электронодонорные соед., насыщающие координац. сферу противоиона, благоприятствуют 1,2(3,4)-присоединению диенов и образованию синдиотактич. полиметилметакрилата.

В пром-сти А. п. применяют гл. обр. для синтеза эластомерных материалов (непрерывной полимеризацией в р-ре, преим. на литиевых инициаторах)- 1,4- и 1,2-полибутадиена, статистич. сополимера бутадиена со стиролом, бутадиенстирольного термоэластопласта; объем произ-ва этих полимеров составляет ок. 1 млн. т/год. Методами А. п. синтезируют также олигомеры бутадиена с концевыми функц. группами, поли1031-44.jpgкапроамид, полиэтиленоксид, полиформальдегид, полисилоксаны и др. Осн. достоинства А. п.-легкость управления, возможность получения почти всех перечисленных гомо- и сополимеров бутадиена на одном и том же оборудовании при миним. изменениях технол. процесса, наличие долгоживущих активных центров, высокая чистота получаемых продуктов. Систематич. изучение А. п. ненасыщенных соед. началось в 20-х гг. 20 в. (С. В. Лебедев, К. Циглер). Работы по теории А. п. и ее практич. реализации особенно интенсивно стали развиваться с сер. 50-х гг., когда была открыта способность Li вызывать образование цис-1,4-полиизопрена, близкого по структуре и св-вам к НК, и были в полной мере осознаны синтетич. возможности живущих полимеров.

Тэгов нет

2632 всего просмотров, 0 просмотров за сегодня

  

Leave a Reply

You must be logged in to post a comment.

SAN пластик общего назначения АБС-пластик cтандартный литьевой АБС-пластик антистатический АБС-пластик литьевой АБС-пластик самозатухающий АБС-пластик специальный литьевой АБС-пластик специальный экструзионный АБС-пластик стандартный литьевой АБС-пластик стандартный экструзионный АБС-пластик термостойкий литьевой Блок-сополимер пропилена и этилена Блоксополимер пропилена Бален Высокоударопрочный полистирол Гроднамид Пoлипропилен ПВХ - пластик Пластикат поливинилхлоридный Полиамид стеклонаполненный Полиамид трудногорючий Поливинилхлоридный пенопласт Поликарбонат cпециальный Поликарбонат неусиленный Поликарбонат общего назначения Поликарбонат самозатухающий Поликарбонат специальный Поликарбонат стеклонаполненный Полимеры Полиметилметакрилат гранулированный Полиметилметакрилат листовой Полипропилен Бален Полистирол общего назначения Полистирол ударопрочный Полиуретан Elastollan Полиэтилeн Полиэтилен высокой плотности Полиэтилен для кабельной промышленности Полиэтилен низкого давления Статистический сополимер пропилена Статистический сополимер пропилена Бален Сэвилен Фторопласт Фторопласт-4МБ Фторопласт-40 Фторопласт-40М Фторопласт-42